If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150=400(t)-4.9(t)^2
We move all terms to the left:
150-(400(t)-4.9(t)^2)=0
We get rid of parentheses
4.9t^2-400t+150=0
a = 4.9; b = -400; c = +150;
Δ = b2-4ac
Δ = -4002-4·4.9·150
Δ = 157060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{157060}=\sqrt{4*39265}=\sqrt{4}*\sqrt{39265}=2\sqrt{39265}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-400)-2\sqrt{39265}}{2*4.9}=\frac{400-2\sqrt{39265}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-400)+2\sqrt{39265}}{2*4.9}=\frac{400+2\sqrt{39265}}{9.8} $
| F(15.5)=6/2x-3 | | F(15)=6/2x-3 | | F(23)=6/2x-3 | | F(6)=6/2x-3 | | 3x−4=5x+14 | | 8k+4=2k+19 | | 8q+1=2q+37 | | 4e-3=5e-11 | | a2(a+3)+3(2a-1)=19a= | | 3x+1=4x-799 | | 6w+1=4w+21 | | 8v+2=4v+10 | | 3/4x-19=24 | | 9g-3=2g+39 | | 8-3r=32 | | 7a+7=3a+39 | | 4s+10=5s+2 | | v+48-v-50=v | | 4n/10=6 | | X/25x+2=53x-3 | | 7+b-4=22 | | 36/x(8-6)=4 | | 2x²-20=11x | | 2x²-20=-11x | | 4^x*5^2x=10 | | 5x+5/4x=180 | | d+6=33 | | 0.4x+90+0.4875x-58.5=x | | 7+5x=2-3x | | S^2+2s^2=3 | | -30=3(3x+3)-3 | | 5=5(2x-1) |